A Library for the Birds

A heads up for our readers…in addition to eggs and nests, this post contains multiple images of bird taxidermy, which some may find unsettling. If you do, no problem! Skip this particular post, and we’ll see you on the blog next Tuesday!

Deep within Princeton University’s Department of Ecology and Evolutionary Biology, there is a plain door with a fairly innocuous sign mounted nearby:

Behind that plain door, however, is an amazing treasure trove of natural history. It’s the Princeton Bird Collection, which contains a taxidermy catalog of over 6,000 bird specimens, some of which are over 150 years old! Many were collected by William Earl Dodge Scott, who was appointed Curator of the Department of Ornithology in 1879.

Princeton’s bird room contains a multitude of hulking gray metal cabinets. While I’m used to our library’s special collections cataloged and ordered on regular bookshelves, the bird room’s cabinets open to reveal horizontal wooden drawers containing various specimens. These collections are available for teaching and research, including the Stoddard Lab’s research on avian coloration and morphology.

The drawers also contain nests and eggs, which are similarly laid out for researchers:

There are larger nests as well, including this amazing one that I’m pretty much ready to curl up and take a nap inside:

Beyond the drawers are a fantastic assortment of standing taxidermy, both large and small. Below are just a few the staff unwrapped for me to photograph…from top left to bottom…an emu, ground hornbill, kiwi, barn owl, macaw, snowy owl, and golden eagle.

And check out this! It’s a quetzal, which hails from Central America. It was was considered sacred by the Ancient Mayas and Aztecs. The photo really doesn’t do it justice. The coloring on the bird is simply exquisite.

The bird collection also contains the documents and journals of Charles Roger, a professor of ornithology at Princeton from 1920-1977. The journals, which he began as an eager boy of eleven and continued until he was eighty-four are a fascinating and informative body of work. You can read more about the digitization of his works, and find some awesome coloring pages from our special collections here (as well as a couple fun bird projects!).


A very special thank you to Cassie Stoddard, Assistant Professor in Ecology and Evolutionary Biology, for arranging for me to photograph the bird room, and answering my questions about ducks!

Coloring Feathers

This week libraries, archives, and cultural institutions around the world are sharing free coloring sheets and books based on their amazing collections. Hosted by The New York Academy of Medicine, the #ColorOurCollections archives is up year round, and the 2021 edition features 95 institutions from around the world, including the Princeton University Library!

The library’s “Coloring Feathers” pages were selected by Jennifer Cabral-Pierce, and are part of “Capturing Feathers,” her fantastic digital exhibit. It celebrates a collaboration between Princeton University Library and the Department of Ecology & Evolutionary Biology. Together, they worked to digitize and study the personal journals of ornithologist Charles H. Rogers (1888-1977).

In honor of the “Coloring Feathers” theme, Katie and I also selected some blog bird posts we love, utilizing materials you can find at home. Note: If you don’t have feathers handy, just fringe some paper!

An easy-to-assemble bird puppet with fantastic flapping wings:

spring chicken

Our ever popular wrist parakeet (and an owl version for all you wizarding fans):

perfect parakeets

A hilarious hide-and-seek duck game in your own home:

fridge duck_4

A reading birdy on a perch (birdcage optional if you have pipe cleaners around!):

tweet-reading-is-sweet

Or, how about a snack worthy of a swan?

the snack of the swan 3


Coloring page is from Physica Sacra, (ca. 1731-1735), vol. 1, page 642, Princeton University Library Collection Treasures of Rare Book Division, EX Oversize 5366.816q, Rare Book Division, Department of Special Collections, Princeton University Library.

A Day in Digitopolis, Part I

day in digitopolis part 1We’ve all wanted to jump into books. Who doesn’t, for example, want to go to Diagon Alley and hit the shops? Join Hazel for stories in the Honeycomb? Explore Babilonium with Candy Quackenbush? Or sail the skies with Matt Cruise on the Aurora? Part of my job at the Cotsen Children’s Library is to bring these places to life for kids, and this month, we headed to The Lands Beyond to visit Digitopolis, the mathematical kingdom in The Phantom Tollbooth.

The math event was intended for children ages 4-10, and my goal was to make it full of exploration, demonstrations, games, challenges, and unexpected connections. And by the four million eight hundred and twenty-seven thousand six hundred fifty-nine hairs on my head, I think we did it!

A Day in Digitopolis took place in the atrium of Princeton University’s Frick Chemistry Laboratory, a soaring, three-story structure of glass and metalwork. Here’s our welcome desk with two student volunteers and Pi balloons.

digitopolis welcome deskBut before I get started on all the details, I’d like to introduce our event collaborator, Bedtime Math. Founded by Laura Overdeck, Bedtime Math is a NJ-based nonprofit organization that provides playful, zany math problems for parents to do with their kids everyday. In addition to sharing their content through their books, e-mail, and free app, they created Crazy 8s, an after-school math club that has been launched in over 6,000 locations nationwide. These guys know, and love, math.

bedtime math booksBedtime Math brought 3 fantastic activities to the event: Spy Training, Beach Ball Party, and Glow-in-the-Dark Geometry. Here’s Spy Training, which was all about codes and ciphers…

spy trainingAnd here’s Beach Ball Party, which involved counting, stacking, and chasing beach balls determined to make a break for it.

beach ball partyIt also involved Ellen Williams (who you last spotted being pelted with marshmallows in this post) inflating dozens and dozens of beach balls for kids at the event. That’s her in the lower right corner of the photo, hard at work. Very impressive lungs has our Ellen (did I mention she sings in multiple choirs?).

But the total show stopper was Bedtime Math’s Glow-in-the-Dark Geometry. This took place in a darkened classroom off the main event floor. Here, kids could build illuminated structures with glow stick bracelets and styrofoam balls. The results were totally amazing.

glowing geometrySome kids decided to use the original plastic connectors that came with the bracelets to make unique geometric creations. Here’s one of my favorites. A series of loops that, when spun, becomes a sphere!


Bedtime Math was recently invited to the White House to take part in an early STEM learning summit. Seriously. When it comes to amazing math connections for kids, Bedtime Math has it down!

Moving to a different section of the event floor, we find the fabled number mines of Digitopolis. In the book, Milo, Tock, and the Humbug learn that numbers are, in fact, excavated out of the earth, much like jewels and precious stones. The talented Maria Evans from the Arts Council of Princeton built the mine you see below, but we built another one for a later event. You can find the step-by-step instructions here.

number mines 1The mines were stocked with an assortment of wooden numbers. I used 4″ numbers I found online at Woodcrafter. If you’d like a cheaper option, I recommend printing paper numbers on card stock.

At the event table, kids reached into the mine, extracted a number, and then decorated it with a combination of metallic markers and glitter markers. We also had plastic gems and glue on hand for some additional bling.

number mines 4number mines 5

number mines 2The mines were staffed by high school volunteers from the Arts Council, who were suitably decked out in miner helmets.

number mines 3Elsewhere in Digitopolis was the “Fibonacci Forest,” hosted by the Stony Brook-Millstone Watershed Association. This table focused on math in nature. Specifically, symmetry, shapes (like spheres, hexagons, spirals), fractals, and Fibonacci numbers. The Watershed brought a ton of items for kids to touch, connect with, and explore (including my personal favorite, a gorgeous nautilus shell).

nature math 1nature math 2The Watershed also did a cool fractal tree project. It involved a half-sheet of green paper, brown markers, and rulers (here are the instructions if you’d like to see them).

nature math 3We decorated the finished fractal trees with bird and leaf stamps, but you can also just use markers or color pencils.

nature math 4And speaking of wildlife, how about some zebra math? We were delighted to be joined by Princeton University Professor Dan Rubenstein from the Department of Ecology and Evolutionary Biology. Among other things, Dan does field work with African zebras.

zebra math 1Some researchers believe that zebra stripes exist to confuse predators. So Dan and his constituents developed “Dazzle Confusion,” an iPad game in which kids “become the lion” and tried to tap black, white, or striped moving targets to determine which one is most difficult to hit.

zebra math 2At the end of the game, the program tabulated the kids’ results and displayed them on a large screen. As the event progressed, the results continued to accrue. This lead to conversations about data collection, measurement, central tendencies, and averages.

zebra math 3It’s worth noting that although there was much variation on kids’ “strikes” on the targets, there was a strong trend (p < .08) showing that the striped targets were hardest to hit! How’s that for some real world math?

Continuing with the technology theme, the Princeton Women in Computer Science designed an original math game for kids using Scratch, a visual programming language developed by MIT.

scratchHere’s a screen shot of the game, which was created by sophmore Lucy Lin. If you’d like to test drive the game yourself, here’s the link.

scratch screen shotThe game was cool, but even cooler was the fact that there was another laptop running tandem to the gaming laptops that showed all the algorithms behind the Scratch program. And volunteers were on hand to answer any and all questions about computing. They also had a couple of encryption puzzles for kids to crack.

Meanwhile, the Princeton Chemistry Outreach Program (we’ve exploded things with these guys before) was busy making awesome math / science connections with kids. Dr. Wagner and her students ran hands-on experiments with parts per million, vitamin c clocks, and timed invisible ink.

chemistry outreach 1chemistry outreach 2chemistry outreach 3For those who prefer their math undiluted, the Princeton University Mathematics Club came out en force to host a “Playful Problems” table. Here, kids found a plethora of logic puzzles, word problems, visual puzzles, calculator tricks, the works!

math club 1math club 2There were 12 different activities for children ages 4-10. The activities ranged from easy to moderately difficult. Here’s an example of our simplest puzzle, which was created by Casandra Monroe (whom you first met here). Here’s the template if you’d like it.

milo number grid puzzleBelow is a list of what we offered at the event table. In addition to using Google to find some of these puzzles, Math Wizardry for Kids (Barron’s, 1995) and How to be a Math Genius (DK Children, 2012) were terrific resources.

  • Suduko
  • Lattice multiplication
  • Logic grid puzzle
  • Matchstick puzzles (we used Q-tips instead of matchsticks)
  • Milo number grid maze (see above)
  • 24 Game
  • Multiplying by 9 finger trick
  • Make a paper star with only 1 cut
  • Superimposed shapes puzzle
  • Visual sequencing puzzle
  • Word problems
  • Birthday calculator trick

Important! If you put together your own Playful Problems table, make sure you provide an answer sheet for each problem. That way, parents and kids can check their answers or get a little hint. Also important! No matter how easy the puzzle, provide an answer sheet (you don’t want younger kids to think that their puzzle was too “easy” for a solution sheet).

For those wanting a bit a exercise with their mathematics, we had a giant 16′ x 16′ floor maze (building instructions for it are in this post). Kids had to get from start to finish in the maze – without making a single right-hand turn. If you got stuck, the solution was posted on some glass doors opposite the entry to the maze.

no right turn maze at eventBy the way, did you notice the cute play cart parked in the upper right corner of the above image? That’s one of our “Trio of Treats.”

trio of treatsI always try to include something for the littlest patrons, so I bought 3 adorable food carts and stocked them with math play sets. The food carts are by KidKraft (Sweet & Sunny Lemonade Stand) and the play sets are by Learning Resources. We used  Piece-A-Pizza Fractions, Number Pops, and Count ‘Em Up Popcorn.

And, because little kids love to take things in and out of containers, I bought a fabric basket for the pizza cart, a plastic box with a hinged lid for the ice pop cart, and a clear container for the popcorn cart. After the event, we donated the carts and math sets to a local non-profit preschool.

trio of treats customerOne of the most popular event tables, however, was “Visit the 4th Dimension.” It was hosted by scienceSeeds (whom you first met here, and then again here).

scienceseeds 1At the event table, kids learned about the different dimensions (1st is a line, 2nd is a square, 3rd is a cube, 4th is a tesseract). ScienceSeeds brought their 3D printers to the event and made models. You can see a tesseract in progress below. Awesome.

scienceseeds 2Kids could also make 3D models of their own using drinking straws and plastic connectors. You can buy the plastic connectors online (from Strawbees). However, scienceSeeds has a die cut machine and was able to purchase the die cuts (from Accucut) and make their own connectors from plastic sheets (from Grafix).

scienceseeds 4Like I said, their table was hopping – they estimate they went through at least 3,500 straws!

scienceseeds 3The thing I liked most about the project is that there was no limit to the shape, size, or intended use of the 3D models.

3D model 13D model 23D model 53D model 33D model 4

If plastic connectors are not in your budget, I’ve seen similar activities that used straws and pipe cleaner pieces (like this one), or sculptures that that involved cutting and sliding the ends of bendy straws into one another (like this one). I’ve also seen toothpick and marshmallow, (or toothpick and gum drop) geometric structures. But I tend to avoid those because of food allergies.

Whew! Believe it or not, I’m only halfway through all the event activities! You can check out Part II here…prepare to meet Digitopolis’ famous celebrities, get a bit of hands-on history, listen to some musical fractions, and view some truly stunning representations of infinity…

Winter is Coming

winter is comingIt’s a diorama, a keepsake box, a mini exhibit, AND a lesson in ecology! Open the lid of this winter landscape and you’ll find the creatures that hibernate, burrow underground, and tunnel underneath the snow, complete with an information card!

open woodland boxWe read Over and Under the Snow, written by Kate Messner, and illustrated by Christopher Silas Neal (Chronicle Books, 2011). A father and child ski over the deep snow in the woods. Even though it’s a world of white, signs of life are everywhere – squirrel, owl, deer, snowshoe hare, and fox. But under the snow is yet another world. Shrews and voles run in tunnels. Bullfrogs burrow in the mud, bears hibernate, and a queen bee sleeps, waiting for the first signs of spring. The book ends with the child in a cozy bed, dreaming of nature. An absolutely beautiful book, with gorgeous, bold illustrations set against snowy white.

You’ll need:

  • 1 box with a lid
  • Brown construction paper
  • 1 woodland template, printed on 8.5″ x 11″ white card stock
  • An oval of blue construction paper (approximately 2.5″ x 4.5″)
  • An oval of silver mirror board (approximately 2.5″ x 4.5″)
  • A rectangle of brown wrapping paper (approximately 7.5″ x 10.5″)
  • A smaller rectangle of brown wrapping paper (approximately 3.75″ x 4.5″)
  • White cotton balls
  • 4 small clear plastic small gemstones (optional)
  • Scissors, tape, and glue for construction
  • Metallic markers for decorating
  • Hot glue

First, find a box with a lid. I used white cardboard pencil boxes with hinged lids from Discount School Supply (a dozen cost $17 so a bit of a splurge). To give the outside of the box a little pop of color, we put a strip of patterned tape around the perimeter, but this is optional (or, just use markers to decorate!).

Line the inside of the box (including the underside of the lid) with brown construction paper. Glue an oval of blue construction paper on the right side of the box lid. Cut and color the bear, bee, vole, shrew, and bullfrog from the template, and glue them inside the box. Use markers to draw burrows, dirt specks, and tree roots (we used metallic markers, and they looked great on the brown paper!). Glue the information card to the inside of the box as well.

open woodland boxClose the lid of the box, and glue an oval of silver mirror board to the right of the box, directly above the blue construction paper oval. If you don’t have mirror board, use tin foil.

Now for the tree! Use a brown marker to draw vertical lines on a tall, 7.5″ x 10.5″ rectangle of brown wrapping paper. Then squish, crinkle, and wrinkle the paper. The more wrinkly it gets, the better!

woodland tree step 1Roll the paper into a tube and secure it with tape. Cut 4 tabs in the bottom of the tube (each tab should be about 1.5″ long). Fold the tabs outwards. Later, you’ll use these tabs to attach the tree to the box lid:

woodland tree step 2Cut 5-6 tabs in the opposite end of the tube (these tabs are much longer, about 5″). Fold them out gently, then twist them to create the branches of your tree.

final steps woodland treeHot glue (or tape) the tree to the lid of the box. If you’d like to add a log to your landscape, use a brown marker to draw horizontal lines on a 3.75″ x 4.5″ rectangle of brown wrapping paper. Crinkle the paper, then roll the paper into a tube and secure it with tape. The final length of the log should be 3.75″. Set the finished log aside for a moment.

Glue white cotton ball “snow” to the lid of the box. Then cut and color the squirrel, owl, deer, snowshoe hare, fox, and tree leaves from the template. Glue these items, plus the log, to your winter landscape.

winter is comingFor some extra sparkle, I hot glued 4 small clear plastic gemstones to the edge of the lake. But this, of course, is optional.

frozen lakeYour winter landscape is complete! Well, maybe not quite complete…

jon snowBet you a 33 pound chocolate dragon egg he’s coming back in season six.